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Determination of the sonic line in hypersonic 
flow past a blunt body 
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The Newtonian theory of inviscid hypersonic flow is extended to obtain a solution 
uniformly valid in the subsonic region, and that is used to determine the position 
and shape of the sonic line. The main modification to the theory has to be made 
near the body surface and an expansion, essentially in terms of the stream func- 
tion, is employed. 

For simplicity the solution is limited to the cases of axially- and plane- 
symmetric flows. As an illustration of the theory the flows past a sphere and a 
circular cylinder are treated in some detail. Comparison with the numerical 
results of Garabedian and Lieberstein gives favourable agreement. 

1. Introduction 
In  hypersonic flow past a blunt body the incident stream is arrested by the 

strong shock which appears in front of the body. When the body is blunt and 
symmetrical about its axis the shock is also symmetrical and crosses the axis at 
right angles a short distance ahead of the body. The flow between the shock and 
the body is subsonic in the neighbourhood of the axis where the fluid has crossed 
an almost normal shock, but it speeds up as it moves away from the axis and 
crosses the sonic line into the supersonic region that surrounds the part of the 
body away from the nose. Approximate solutions for hypersonic flow past a 
blunt body can be determined by using the Newtonian approximation, which is 
valid when the parameter E = (y - l)/(y + 1) is small. The expansion procedures 
used in these solutions lead to the results that the velocity component parallel 
to the body and the speed of sound are each constant along a streamline (see 
Hayes & Probstein 1959). Though the latter result is uniformly valid, the former 
breaks down in the neighbourhood of the body surface since the streamlines there 
come from the stagnation region. However, near the shock the two results can 
be used to determine the shape of the sonic line, which initially follows the 
streamline through the sonic point on the shock. 

In  this paper a solution valid in the subsonic region will be presented; the 
limitation to the subsonic region allows certain simplifications to be made. The 
flow variables are found in terms of the pressure on the body, which is correctly 
given to a first approximation by Freeman’s solution (1956). Alternatively, this 
pressure distribution could be obtained from experiment. 

Numerical calculations of the position of the sonic line have previously been 
* Now of Department of Mathematics, University of Leeds. 



496 M .  I .  G. Bloor 

obtained by Garabedian and Lieberstein by considering the indirect problem, 
in which a certain shock shape is assumed and the corresponding body shape is 
calculated. An example of their calculations is given by Hayes & Probstein for 
a free-stream Mach number of 20 and a gas for which the ratio of specific heats 
behind the shock is 1.17. Reasonable agreement with their solution is obtained. 

2. Conditions at the shock 
Let the pressure, density and enthalpy be denoted by p ,  p and i respectively, 

and let the suffix 0 refer to the uniform conditions ahead of the shock and the 
suffix s to conditions immediately behind the shock. Let U, be the uniform 
velocity of the incident stream and let u,, and ul, be the components of velocity 
normal and tangential to the shock and immediately behind it. Then, at a point 
where the shock is inclined a t  an angle 0 to the incident stream, the Rankine- 
Hugoniot equations give 

(2.1) 

(2.2) 

(2.3) 

po U, sin 0 = psuns, 

p ,  + po Ug sin2 0 = p ,  + p, uh, 
i, + iUg sin2 0 = is + tut,. 

u, cos 0 = UlS. 

and 

In  addition the tangential component of velocity is continuous so that 

(2.4) 

In  hypersonic flow the free-stream Mach number is large so that the usual strong 
shock approximations can be made; the equations (2.2) and (2.3) then simplify 
and become 

po U$ sin2 0 = p, uis -t p,, (2.5) 

and QUtsin2 0 = is + $u;,. (2.6) 

POIPS = (7- 1)/(7+ 1) = 6.  

For a perfect gas the density ratio across the shock is 

(2.7) 

In  terms of e the flow quantities immediately behind the shock are 

and 

u,, = eUO sin 0, 

p ,  = (1-e)poUisin20, 

is = Q( 1 - e2) U; sin2 0. 

3. The sonic point at the shock 
From equation (2.10) the speed of sound is given by 

a: = e(1 +e)  Ugsin20. (3.1) 

The shock angle 0" a t  the sonic point can now be determined with the help of 
expressions (2.4), (2.8) and (3.1), and it is given by 

tan2@* = lje. 
If +T- 0" = e*, it  follows that 

e* == €4. 
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4. Method of solution 
Previous work in this field shows that near the shock both the velocity com- 

ponent parallel to the body and the speed of sound are constant along streamlines 
so that a first approximation to the sonic line is given by the streamline through 
the sonic point on the shock. It is known that the actual sonic line deviates 
towards the body from the streamline (see Hayes & Probstein 1959) so that the 
region of interest is a region covered by the streamlines crossing the shock between 
the stagnation point and the sonic point on it. 

A co-ordinate system is chosen in which xis measured along the body from the 
stagnation point and y perpendicular to it; u and v denote the velocity com- 
ponents in the x and y directions, respectively. The continuity equation is 

where (1 + y/RJ dx is an element of length in the x-direction, Rb(x) is the radius 
of curvature of the body, and k is the distance of a point from the line of s p -  
metry, which is taken to mean the plane of symmetry in the two-dimensional 
case and the axis of symmetry in the axially symmetric case. In  the two-dimen- 
sional case n = 0 and for the case of axial symmetry n = 1. After introducing 
a stream function $ defined by 

a$/ay = puEn and a$/ax = -pvkn(l  +y/Rb), (4.2) 

the variables are changed from x and y to x and 9. 
Conditions at the shock give 

where 16, is the distance of a point on the shock from the line of symmetry, and 
6 is the x-co-ordinate of the point where the streamline crosses the shock. 

As a first approximation the shock is assumed to be parallel to the body in the 
stagnation region, though some relaxation of this condition could be made that 
involves the solution of a certain integral equation. Freeman showed that the 
stand-off distance is of the order of (e log e)d in the two-dimensional case and ed in 
the axially symmetric case so that the radius of curvature of the shock is of order 
d where d is the radius of curvature of the body at the nose and will be used as a 
representative length. Now 

k&) = ~oe(5)R, cos 8d8, 

which, for the region under consideration where 8 = O ( d )  and assuming 

d-l dRJd0 = O( l) ,  

yields the approximate expression 

W) = t + O ( 4 .  
Equation (4.3) may therefore be written 

(4.4) 

(4.5) 

(4.6) 
Fluid Meoh. 21 32 



498 M .  I .  G.  Bloor 

If x and 5 are now used as independent variables, the momentum equation is 

Bernoulli's equation is 

and also PIP' = ~s(E)IrPs(s)I~. (4.9) 

Substituting equations (2.7) and (2.9) for ps and% respectively in equation (4.9), 
a series expansion in E is obtained for p/p and involves log (p/p, Ui) .  This, when 
substituted in equation (4.8) and when terms of O($) are neglected, yields the 

(4.10) 
equation 

since v = O(sU,) from conditions a t  the shock. The form of equation (4.10) with 
the condition that 8 = O ( d )  suggests that an expansion in terms of €4 in the form 

(4.11) 

(4.12) 

In  the region under consideration the unit of length in the direction is d d ,  

Substituting for and the above expansions in equation (4.7) and then equating 

2slog (PlPOW - 02(E) + (.IU0)2 = 0, 

PIP0 ui = $)O + + €$)2 + . *  * 7  

u/uo = €4U, + EU2 + . . . , 
should be tried. 

so that E is replaced by El = €Jdd.  

coefficients i t  is found that 

PO = and P1 = (4.13) 

since the second and third terms in the equation are O(s)  and O(&) respectively 
whereas the first term is 

In  obtaining the above result (4.13) it must be remembered that near the shock 
in axially symmetric flow kn = O(E*d). Hence, in the subsonic region the pressure 
is a function of x only to O(E*).  If the value of the pressure on the body isp, uipb(x)  
say, then 

PO+"pl = pb(x) .  (4.14) 

Using Bernoulli's equation and putting 8 = 4, where 4 is the complement of 
the angle of incidence of the body (using Freeman's analysis this can be shown to 
be consistent with the approximations used here), the first approximation for the 
velocity component u is obtained in the form 

u = uo E'Ul = uO[#'(E) - 2ElOgpb(x)]*. (4.15) 

Hence, using expression (4.15) and the fact that the speed of sound is constant 
along a streamline and takes the value Ugd as given by equation (3.2), the first 
approximation to the sonic line is 

[$"[) - 2Elogp,(x)]+ = €4. (4.16) 
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For the sonic line near the shock x = O/(s*d) andp,(x) = 1 + O(E).  Equation (4.16) 
then shows that the first term in brackets makes the greater contribution to the 
velocity and gives the sonic line to be the streamline through the sonic point on 
the shock. Near the body, where x = O(d), pb(x) is considerably less than unity, 
$([) is tending to zero and so the second term becomes important. 

The error involved in equation (4.16) is O(E) .  Since in deriving equation (4.10) 
terms of O(@)  were neglected, the equation can be used to discuss the magnitude 
of u2. It is seen that u2 is entirely dependent on the slope u of the shock relative 
to the body since 0 = $ + c r  and if u = O(E*) then u2 = 0. In  this case the error 
in the equation for the sonic line is O(&). 

The equation of the streamlines may now be found using equation (4.2) and 
noting from equation (4.9) and the conditions at the shock that 

The streamlines are given by 
p/pu; = S+O(@), 

using equation (4.2), and so 

(4.17) 

since kn = iit + O ( @ .  At the shock [ = x and hence the equation of the shock is 
simply obtained by substituting x for ( in the above equation. 

The equation for the sonic line is obtained in terms of x and y by substituting 
for 6 from equation (4.17) in equation (4.16). 

5. The second approximation when a = O(d). 
From the conditions at the shock the velocity component v can be seen to be 

O(sUo) so that substituting the expansions for the pressure and the velocity com- 
ponent u in equation (4.7) 
equation 

By integrating equation 
equation 

- - 
gives the next approximation of the momentum 

(5.1) and using the known expression for u1 the 

is obtained. The substitution for p from equation (4.9) into equation (4.8) gives 
on expanding and neglecting terms of O(&) 

- $2(6) + 2$('$) cT(8 + 2s10gpb(z) + 6' + - 2c210gPb(x) 

+ 2e2[10gPb(x)12 + 2c2p2(x, - 2c$z(6) + q2 = O, (5*3) 

from which the total velocity q can be obtained. 
Freeman's fist approximation to the velocity component u parallel to the 

body, namely u = uo cos @(t), is certainly valid in the region between the shock 
and the streamline through the sonic point on the shock since there the values of 

32-2 
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cos a([) and u/U, are both O ( d )  but in the subsonic region Freeman’s assumption 
that u is constant along each streamline, is not valid since cos a([) + 0 as 5 + 0 
whereas u/U, may be O(E*). 

Hence in order to evaluate p,,(x) the expression for the pressure distribution 
near the body, i.e. p b  + ep,, must be matched with Freeman’s solution, taken to 
a second approximation, across the streamline through the sonic point on the 
shock, i.e. where 5 = E*. 

The speed of sound to 0(e2) is given by 

a2 = E + 4 2  logp,(x) - 1 - 4“[)], (5.4) 

and thus would enable the equation for the sonic line on which q = a to be 
obtained. A more detailed analysis of the flow might proceed as follows. From 
the known value of u1 the first approximation to the velocity component v can 
be found by using equation (4.2) and hence the value of u3 can be determined 
from equation (5.3). This permits the third approximation p 3  for the pressure 
to be obtained provided there exists a sufficiently accurate solution near the 
shock with which to match the expression thus obtained. 

6. Solutions for the sphere and circular cylinder 

the circular cylinder in plane symmetric flow. For both of these cases 
Of particular interest are the cases of the sphere in axially symmetric flow and 

4 ( 4  = x/d, (6.1) 

and kb = Rb Sin XI, (6.2) 
where x’ = x/d. 

Expressions for the pressure distribution on the body in two cases are now 
required, and these are simply those obtained by Freeman, since, although his 
analysis is only valid near the shock, the pressure is constant to O(s*) across the 
layer near the body, as has already been seen. The pressure distributions on the 
body are therefore given by 

(6.3) and 

The equations of the streamlines are now obtained by the use of the above 
expressions, giving 

I (i) pb(x) = 1 -$sin2& 

(ii) pb(x) = 1 - $ sin2 x’ 
for the sphere, 

for the cylinder. 

{[F2- %log (1 -$sin 

- [- 2~1og (1 - (6.4) 

Y 6 

d 
(i) - = y’ = - 

sin x’ ( 1 - $ sin2 x‘) 

- .  
The equations of the sonic lines in terms of z and y are then determined, namely 

(i) sinx’(1 -+sin2x’)y’/E+ [-  2slog(l -$sin2x‘)]* = €4, 

(ii) cosh {( 1 - $ sin2 2’) y ‘ / ~ }  = 1/[ - 2 log (1 - $ sin2x’)]*. and 
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Examination of the second equation in (6.5) shows that in the two-dimensional 
case the sonic line is orthogonal to the body surface. Also in both of these cases 
the difference in slope between the shock and body surface is O(d) ,  so that u2 = 0 
and hence equations (6.5) are accurate to O(s).  Figure 1 shows the shapes of the 

FIGURE 1. Sonic lines for a sphere and a circular cylinder with y8 = 1.17. S = shock; 
B = body; st = streamline; s l= sonic line. (The broken lines refer to the results of 
Garabedian and Lieberstein). 

two sonic lines and in the case of the sphere can be compared with the unpublished 
results of Garabedian and Lieberstein (Hayes & Probstein 1959). 
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